
Practical Assignment: Microservice Architecture Development 

 

Title: Design, Develop, and Deploy a Microservice-based 
Application 

 

Objective 

This assignment aims to give students practical experience with 
microservice architecture and expose them to the core concepts of 
microservices, including service decoupling, API communication 
(REST/gRPC), inter-service communication, containerization (Docker), 
orchestration (Kubernetes), CI/CD integration, fault tolerance, and 
monitoring. 

Students will gain hands-on experience by designing, building, 
deploying, and testing a cloud-based microservice application with a 
real-world use case. 

 

Project Overview 

You will build a microservice-based e-commerce application (or similar 
domain, such as booking or inventory management). This system will 
consist of multiple independent services communicating with each 
other, including: 

1. User Service: Manages user data and authentication (e.g., sign-
up/login). 

2. Product Service: Manages product catalog and product-related 
operations. 

3. Order Service: Handles order creation, updates, and tracking. 
4. Payment Service: Simulates payment processing (including error 

simulation for failed transactions). 
5. Notification Service: Sends email or SMS notifications when 

orders are placed/processed. 

Each service should be self-contained, maintain its own database, and 
communicate via REST APIs or gRPC. 

 



Tasks and Deliverables 

 

Part 1: Project Setup and Service Design (10%) 

• Architectural Design: Design the architecture diagram for the 
microservice system. 

• Service Definitions: Identify and define the responsibilities and 
interfaces (API endpoints) of each microservice. 

• Database Design: Choose appropriate databases for each service 
(SQL/NoSQL). 

o Example: Use PostgreSQL for User Service and MongoDB for 
Product Service. 

• Tech Stack Selection: Choose appropriate technologies (e.g., 
Django/Flask for API services, Node.js, etc.). 

• API Contracts: Provide OpenAPI/Swagger documentation for each 
service API. 

Deliverable: Submit the architecture diagram, API contracts, and 
database schema design. 

 

Part 2: Service Implementation (40%) 

Implement each of the following services: 

1. User Service: 
o Register/login users using JWT authentication. 
o Provide a user profile management feature. 
o Store user data securely. 

2. Product Service: 
o Manage CRUD operations for products (create, read, update, 

delete). 
o Provide product search functionality. 

3. Order Service: 
o Manage order creation and updates. 
o Integrate with the Payment Service to simulate payments. 

4. Payment Service: 
o Process payments and return a success/failure response. 
o Simulate payment errors for testing. 

5. Notification Service: 
o Send notifications (using a message queue such as 

RabbitMQ/Kafka). 



o Notify users via email/SMS when an order is successfully 
placed. 

Deliverable: 

• Source code for each microservice. 
• API documentation using Swagger/OpenAPI. 

 

Part 3: Communication and Fault Tolerance (15%) 

• Implement synchronous communication using REST/gRPC between 
services. 

• Integrate a message queue (e.g., Kafka, RabbitMQ) for 
asynchronous communication between Order and Notification 
services. 

• Implement retry mechanisms and circuit breakers to handle service 
failures using tools like Resilience4j or Istio. 

Deliverable: 

• Code demonstrating fault-tolerant communication. 
• Brief report explaining inter-service communication strategies 

used. 

 

Part 4: Containerization and Deployment (20%) 

• Containerize all services using Docker. 
• Create a docker-compose file to run the services locally. 
• Deploy the services to a Kubernetes cluster (e.g., Minikube or 

cloud provider like GKE, AKS, or EKS). 
• Expose APIs through a Kubernetes ingress controller or API 

gateway (like Kong or Istio). 

Deliverable: 

• Dockerfiles for each service. 
• Kubernetes deployment configurations (YAML files). 
• A brief demo video showing the services running on Kubernetes. 

 



Part 5: CI/CD and Monitoring (10%) 

• Set up a CI/CD pipeline using GitHub Actions or Jenkins to 
automate building, testing, and deploying your services. 

• Integrate monitoring tools such as Prometheus and Grafana for 
service health monitoring. 

• Configure alerts for service failures or high resource usage. 

Deliverable: 

• CI/CD pipeline configurations. 
• A dashboard screenshot from Prometheus/Grafana monitoring your 

microservices. 

 

Part 6: Testing and Reporting (5%) 

• Write unit tests and integration tests for critical services 
(e.g., Payment Service). 

• Perform load testing on the system using tools like Apache JMeter 
or k6. 

• Submit a final report summarizing: 
o Challenges faced. 
o Design and implementation decisions. 
o Future improvements or enhancements. 

Deliverable: 

• Test scripts and results. 
• Final report (max 2000 words). 

 

Evaluation Criteria 

Category Weight Criteria 
Architecture and Design 10% Clear architecture diagram and API 

contracts 
Service Implementation 40% Functional services with correct 

logic 
Communication and Fault 

Tolerance 
15% Proper use of REST/gRPC, message 

queues, and fault-tolerant 
mechanisms 



Containerization and 
Deployment 

20% Correct Docker and Kubernetes 
deployment 

CI/CD and Monitoring 10% Working CI/CD pipelines and 
functional monitoring 

Testing and Reporting 5% Comprehensive testing and well-
structured final report 

 

Submission Guidelines 

1. Submit a GitHub repository with all code, configurations, and 
documentation. 

2. Include instructions on how to run the services locally using 
Docker Compose. 

3. Upload your final report and API documentation as PDFs. 
4. Optional: Provide a link to your deployed application (if 

deployed on cloud). 

 

Additional Instructions 

• Work individually or in teams of 2 students. 
• Use Git version control throughout the project. Each commit must 

reflect meaningful progress. 
• Document all services and configurations to ensure 

reproducibility. 
• Follow best practices for security and scalability. 

 

Academic Integrity 

Adhere to the university's policies on plagiarism and academic 
integrity. Collaboration within teams is encouraged, but any external 
sources must be properly cited. 

 

Conclusion 

This assignment offers a practical introduction to microservices and 
simulates a real-world software development project. It requires 
careful planning, effective collaboration, and technical proficiency 
across multiple domains, including API development, containerization, 



deployment, and testing. This hands-on approach ensures students are 
well-prepared for future roles in software engineering and cloud 
computing environments. 


